Table of Distributions#

Distribution

PMF/PDF and Support

Expected Value

Variance

MGF

{Bernoulli \ \Bern(\(p\))}

{\(P(X=1) = p\) \\( P(X=0) = q=1-p\)}

\(p\)

\(pq\)

\(q + pe^t\)

{Binomial \ \Bin(\(n, p\))}

{\(P(X=k) = {n \choose k}p^k q^{n-k}\) \ \(k \in \{0, 1, 2, \dots n\}\)}

\(np\)

\(npq\)

\((q + pe^t)^n\)

{Geometric \ \Geom(\(p\))}

{\(P(X=k) = q^kp\) \ \(k \in \{\)0, 1, 2, \dots \(\}\)}

\(q/p\)

\(q/p^2\)

\(\frac{p}{1-qe^t}, \, qe^t < 1\)

{Negative Binomial \ \NBin(\(r, p\))}

{\(P(X=n) = {r + n - 1 \choose r -1}p^rq^n\) \ \(n \in \{\)0, 1, 2, \dots \(\}\)}

\(rq/p\)

\(rq/p^2\)

\((\frac{p}{1-qe^t})^r, \, qe^t < 1\)

{Hypergeometric \ \Hypergeometric(\(w, b, n\))}

{\(P(X=k) = \sfrac{{w \choose k}{b \choose n-k}}{{w + b \choose n}}\) \ \(k \in \{0, 1, 2, \dots, n\}\)}

\(\mu = \frac{nw}{b+w}\)

\(\left(\frac{w+b-n}{w+b-1} \right) n\frac{\mu}{n}(1 - \frac{\mu}{n})\)

messy

{Poisson \ \Pois(\(\lambda\))}

{\(P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}\) \ \(k \in \{\)0, 1, 2, \dots \(\}\)}

\(\lambda\)

\(\lambda\)

\(e^{\lambda(e^t-1)}\)

{Uniform \ \Unif(\(a, b\))}

{\( f(x) = \frac{1}{b-a}\) \\( x \in (a, b) \)}

\(\frac{a+b}{2}\)

\(\frac{(b-a)^2}{12}\)

\(\frac{e^{tb}-e^{ta}}{t(b-a)}\)

{Normal \ \(\N(\mu, \sigma^2)\)}

{\(f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\sfrac{(x - \mu)^2}{(2 \sigma^2)}}\) \ \(x \in (-\infty, \infty)\)}

\(\mu\)

\(\sigma^2\)

\(e^{t\mu + \frac{\sigma^2t^2}{2}}\)

{Exponential \ \(\Expo(\lambda)\)}

{\(f(x) = \lambda e^{-\lambda x}\)\\( x \in (0, \infty)\)}

\(\frac{1}{\lambda}\)

\(\frac{1}{\lambda^2}\)

\(\frac{\lambda}{\lambda - t}, \, t < \lambda\)

{Gamma \ \(\Gam(a, \lambda)\)}

{\(f(x) = \frac{1}{\Gamma(a)}(\lambda x)^ae^{-\lambda x}\frac{1}{x}\)\\( x \in (0, \infty)\)}

\(\frac{a}{\lambda}\)

\(\frac{a}{\lambda^2}\)

\(\left(\frac{\lambda}{\lambda - t}\right)^a, \, t < \lambda\)

{Beta \ \Beta(\(a, b\))}

{\(f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}\)\\(x \in (0, 1) \)}

\(\mu = \frac{a}{a + b}\)

\(\frac{\mu(1-\mu)}{(a + b + 1)}\)

messy

{Log-Normal \ \(\mathcal{LN}(\mu,\sigma^2)\)}

{\(\frac{1}{x\sigma \sqrt{2\pi}}e^{-(\log x - \mu)^2/(2\sigma^2)}\)\\(x \in (0, \infty)\)}

\(\theta = e^{ \mu + \sigma^2/2}\)

\(\theta^2 (e^{\sigma^2} - 1)\)

doesn’t exist

{Chi-Square \ \(\chi_n^2\)}

{\(\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2 - 1}e^{-x/2}\)\\(x \in (0, \infty) \)}

\(n\)

\(2n\)

\((1 - 2t)^{-n/2}, \, t < 1/2\)

{Student-\(t\) \ \(t_n\)}

{\(\frac{\Gamma((n+1)/2)}{\sqrt{n\pi} \Gamma(n/2)} (1+x^2/n)^{-(n+1)/2}\)\\(x \in (-\infty, \infty)\)}

\(0\) if \(n>1\)

\(\frac{n}{n-2}\) if \(n>2\)

doesn’t exist